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Abstract—The Griffith theory for unstable crack propagation is re-examined to investigate the difference of
opinion as to the precise dependency of critical stress upon the elastic constant in a brittle material. The apparent
disagreement arising from the calculation of strain energy stored in a cracked body loaded at infinity is resolved
by the observation that the energy of the crack or cavity of certain shape is reasonably geometry independent.
It is found from the solution of the concentric-annulus problem that the stresses and displacements on a closed
contour about the cavity must be modified to yield the correct form of elastic energy. Clapeyron’s theorem is
.employed so that the energy function may be derived from the work done by surface tractions. A general method
for determining the strain energy in an infinite medium with cavities of arbitrary configuration is presented.
Closed form solutions to the problem of an elliptically-shaped flaw are obtained and incorporated into a theory
of brittle fracture. More specifically, critical stresses for an elliptical flaw or crack owing to biaxial tension and
pure shear are provided. The present analysis also confirms Griffith’s claim in 1924 that his original energy
expression, published in 1921, is indeed erroneous.

INTRODUCTION

For more than four decades ago, Griftith [1] suggested an energy approach to predict
the fracture strength of elastic solids containing crack-like flaws. Using Inglis’s solution [2]
for the problem of an elliptical hole in a plate subjected to all around tension, he com-
puted the elastic energy due to the presence of a crack, and compared the amount of in-
crease of this energy as the crack grows with the energy required to form the new fracture
surfaces. He then found that the critical stress needed for the failure of a crack of length
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where 7 is the specific surface energy, E is Young’s modulus, and v is Poisson’s ratio.
The elastic constant x takes the value of 3 —4v for plane strain and (3—v)/(1+v) for
generalized plane stress. In 1924, Griffith [3] claimed the calculation of strain energy
leading to equation (1) was erroncous in that, quoting from his classical paper,
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*““the expressions used for the stresses gave values at infinity differing from the postu-
lated uniform stress at infinity by an amount which, though infinitesimal, yet made a
finite contribution to the energy when integrated round the infinite boundary. This diffi-
culty has been overcome by slightly modifying the expressions for the stresses, so as
to make this contribution to the energy vanish.”

He revised equation (1) to read as

_ 8yE
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but the details of his calculations were not published. As a consequence, many of the
investigators in fracture mechanics have attempted to fill in the missing details and have
even cast doubt on such a revision.

While the critical stresses in equations (1) and (2) differ only in the quantity containing
x, the physical interpretation of the fracture criterion can change significantly for different
loading conditions. In the case of biaxial tension at infinity, the 1921 version would predict
that the applied stress parallel to the crack may either strengthen or weaken the body.
The fracture strength of an infinite medium subjected to the conditions of plane strain
may be infinite if the material is incompressible and is in the state of pure shear at large
distance away from the crack. These and similar view points have been supported by
Wolf [4], Smekal [5], Berry [6], Swedlow {7], and others. In general, however, Griffith’s
modified work in 1924 has been accepted in the literature as being correct. In view of this
apparent conflict, the theory of brittle fracture has yet to rest on a firm foundation.

Recently, Spencer [8] has made an effort to explain Griffith’s work. He argued that if
the proper tractions are specified at the boundary of a large circle around the crack to
within quantities of a certain order, then it is possible to verify Griffith’s 1924 results. It
must be emphasized here that the crucial question to be answered is not how Griffith
arrived at his end results but rather to prove whether his energy expressions are determined
correctly or not?

At first, it seems that the argument could be settled by computing for the work done
by tractions applied to the outer boundary of the region bounded by confocal ellipses.
The outer ellipse is then permitted to grow without limit, while the inner ellipse degener-
ates into a sharp crack. However, the mathematics involved for a closed form solution
of the problem of confocal ellipses do not appear tractable. An alternative approach is
to establish the qualitative behavior of the strain energy function by solving a relatively
simple problem of a concentric annulus. In fact, the resemblance of the expressions for
the excess of strain energy due to a crack and a circular hole is remarkable. If uniform
stress, o, is applied in all directions at infinity, the energy of the crack having length
2a is

AW = n(l +v)ola® . (3—x), (1921) (3a)
B 4E (k+1), (1924) (3b)

and of the circular hole with diameter 2a is

A W__n_(1+v)a2a2 (B—x), (1921 (4a)
T T2E 0 k41, (1924) (4b)
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The only difference is a factor of 4. Hence, the concentric-annulus problem may be used
as the model to establish procedures for finding the strain energy in an infinite body.

It is intended to develop a method for calculating the work done or strain energy in
an infinite body with a cavity of any shape when external loads are specified at infinity.
This is accomplished by modifying the stresses and displacements on a large contour
around the cavity in accordance with the results obtained from the concentric-annulus
problem. The necessary modifications are then applied to the problem of an infinite
medium weakened by an elliptical hole. The variation of critical stress with the change
in geometry of the ellipse is also studied.

CIRCULAR FLAW IN INFINITE MEDIUM

For clarity, the circular flaw in an infinite body will be adopted as the model to demon-
strate the way in which strain energy was calculated by Griffith in 1921. The edge of the
flaw is free from normal and shear stresses. At infinity, the conditions

o,=ed, 0,=0, T,=1 as (x*+yH)"? - (5)

xy

are to be satisfied. The amount of tension or compression in the horizontal direction is
controlled through the parameter e. By application of Clapeyron’s theorem [9], the total
strain energy in the two-dimensional elastic body as shown in Fig. 1 may be represented
by the integral

2n
W = %J‘o [a,u,-%-t,,,ve],: C da (6)

where ¢ is the radius of a large circular contour surrounding the hole of radius a. The
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F1G. 1. Circular flaw in infinite medium.

stresses o¢,,T,, and displacements u,,v, are referred to polar coordinates r, 6. The
boundary conditions in equation (5) may be considered as the sum of two stress systems,
namely biaxial tension and pure shear, which will be treated separately.
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The solution to the problem of a circular hole in an infinite body under biaxial tension
is well known and can be found in any text book on elasticity. It is also given in terms of

complex potentials by equations (76) in Appendix 2. To provide continuity with the
development to follow, the stresses and displacements will be presented. They are

Yoo oo
S

u, = (K—1)+2 (I+e)— 1+4¢( K+1) —] Hl—ejcos28;. (8a)
4,u r
Vg = 4—#—r [H—(rc—l)( ) ( ) ] {1 —e)sin 20, (8b}

in which u is the shear modulus. The unboundness of the displacements at r = oo is a
peculiarity of elasticity problems with prescribed loads at infinity and cannot be removed.
Inserting equations (7) and (8) into (6) and letting r = ¢, the stored energy is
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When ¢ becomes infinitely large, equation (9) tends toward the value

6, =
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and

W = ~1—-;-‘2L—{( — (1 +e)? +2(1 —e)* +]|(3—x) (1 +e)* +2(x— 1) (1 —e)?]
2 4
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The term

a(l +v)gte?
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[(k—1)(1+e)*+2(1—e)*], (tension) (10)
is expected to increase without bound as ¢ — oo since it represents the energy in an infinite
body with no hole present. The contribution due to the presence of the circular hole is

1 ‘
AW = W—w, = 2 +8‘g-‘1f’- [B=K)(1+eP+2x—1)1—e?],  (1921) (1)
and remains finite. For a uniformly stressed body, e = 1, equation (11) reduces to equation
(4a). A similar expression for the crack problem is

{1 +v)ola’

AW = = (BRI +e+ (k=D =), (1921) (12)
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which agrees with equation (3a) for ¢ = 1. Equation {12) will be deduced subsequently
from the solution of the elliptical-cavity problem. Note that AW depends sensitively upon
the applied stress parallel to the line crack and it changes sign for sufficiently large value
of e.

From equations (78) in Appendix 3, the stress and displacement fields for the case of
pure shear can be derived:

o b s o
O |

7 a\? +
u,=~—r[1+(x+l)() —( ) ]sinfl@, (14a)
2u r
= i n (4) #4) eos20 14
va—zur K— " + . cos 20. (14b)

1t follows that the total energy is

o (P )]
E ¢ ¢ c c

Expanding equation (15) for ¢ » a yields
1 2.2 a 2 a 4
w = T {1 +lx— 1)(—) +o[(—) ]}
E ¢ ¢

2.2
W, = ﬂi%")ii (shear) (16)

- R

and

~

The first term

represents the energy in the body with no cavity and the second term

_ n(l+v)ria?

AW
E

(k—1), {1921) {17

is that part of the energy due to the presence of the circular cavity. If the same calculations
were carried out for a cavity in the form of a crack, it can be shown that

n(l +v)r?a?
AW = 22
4E

(x—1), (1921). (18)

As pointed out in [ 7], the shear energy of a crack vanishes for x = 3-4vand v = 1.
The validity of equations (11) and (17) will now be checked by solving the problem of
concentric annulus.
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CONCENTRIC ANNULUS

Let an elastic body be bounded by two concentric circles of outer radius ¢ and inner
radius g, Fig. 2. The origin of coordinates is placed at the center of the circles and the
applied surface tractions are

g, = g-[(l-{-e)—(l—e) cos20]+sin20, r=c (19a)
T, = ga — ) sin 20+ 7 cos 26, r=c (19b)

FiG. 2. Plane extension of circular ring.

Equations (19) are obtained from equations (5) by transforming the coordinate system
X, y to r, 6. The tractions on the inner boundary, r = a, are assumed to vanish. Although
this problem has not been solved previously, the solution can be found without difficulty.
The details of the derivations are outlined in the Appendices.

Taking t = 0 in equations (19), the stresses and displacements in the annulus may be
calculated from the complex functions, equations (75) in Appendix 2, by application of
the Kolosov—Muskhelishvili [10] stress combinations. The results are

S P T e oo pofe) e oo
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This is an exact expression of the energy accumulated within the annulus, where c is
arbitrary. In the limit as ¢ — o0, equation (22) renders the form of W for an infinite body
with a circular hole, i.e.

2R~

(21b)

oI

o
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n(1 +v)oic?

W:
8E

{(K— D1 +e)?+2(1 —e)* +[(1+e)* +2(1 —~e)?]

el o

In the absence of the hole, a = 0, equation (10) is recovered. Moreover, the energy of the
circular hole can be extracted from equation (23):

(23)
><(lc+1)(

[T IR~

(1 +v)o2a’
8E

AW = (k+D[(1+e)?>+2(1—e)?], (1924) (24)
which is in serious disagreement with equation (11). Equation (24) is identified with
Griffith’s 1924 work, because of its striking similarity to the energy of the crack given by
equation (3b). The relationship between equations (11) and (24) will be discussed later on.

Turning now to the problem of specifying ¢ = 0 in equations (19), use is made of
equations (77) in Appendix 3. The stress components g,, 7,4 can be found as

o L O O R O 1 A
L ) e

[ IR
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AU LT ]

25b)
2 2 4
X (a) -3 [I +(§) }(‘_‘) }cos 28,
r C Fr

and the displacement components u,. v, are given by

LG T oYLl A L) )]
U, = —rf1—|- -3~ e e B S

2u ¢ ¢ ¢ ¢ ¢

{26a)

)
e[ o) e
=l e Y o e L)
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On setting r = ¢ in equations (25), (26) and integrating, it is found from equation (6) that

WJ?“*"’)? [ (H [1+(x-—2)(i)2+(4+k)(§)4+x(g)6]‘ @7

As the ratio a/c — 0, equation (27) may be written in the form

W = l(l—i-v)—r—v {1 +{x+ 1)(9)2 + O[(ﬁ)4]}.
E ¢ ¢

The increase of strain energy owing to the cavity becomes

2.2
AW = ﬁ%v-ﬁ—“—(x+ ), (1924). (28)
Comparing AW in equation (28) with that shown in equation (17) for the same problem
of pure shear, they obviously fail to agree. In the case of a crack, the expression for AW
changes only slightly, ie.
2,2
aw = LT (1924) (29)
4E
which differs from equation (18) in exactly the same way as equation (28) from (17).

In passing, it should be reminded that equations (24) and (28) represent the correct
expressions of strain energy for the circular cavity problem of biaxial tension and pure
shear applied at infinity, respectively, since they are obtained as limiting cases from the
exact solutions of the concentric-annulus problem. Thus, there should be no doubt that
equations (11) and {17) are erroneous. Furthermore, because the same discrepancies may
be accounted for the crack problem, it is plausible to conjecture that the method of solu-
tion used for obtaining equations (12) and (18) is in error. The necessary modifications
that must be added onto equations (12) and (18) will be derived in the next section.
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PROPOSED METHOD OF SOLUTION

As mentioned earlier, it would be difficult, if not impossible, to check the correctness
of equations (12) and (18) by solving the problem of confocal ellipses and then let the outer
ellipse be infinitely large, mainly because the theory of plane elasticity prohibits closed
form solutions to almost all problems with regions that are multiply-connected. An
exception to this is the concentric-annulus problem whose solution plays an important
role in the development of a method for finding the strain energy function.

Consider the discrepancy between equations (11) and (24) caused by the variance of
stresses and displacements in equations (7), (8), (20), and (21). If the contour of radius ¢
in Fig. 1 is made large as compared to the hole radius a, then equations (7) for r = ¢ become

)2+0[(9) 4]} (30a)
C
{(1 —e) sin 20+ 2[(1 —e) sin 26] (g)z + 0[(‘:)4]} (30b)

and equations (8) take the forms

ol =

{(1+e)—(1—e) cos 20 —[(1 +e)—4(1 —e) cos 29](

o
RERS

(1) _
T =

N

ul) = %c{(x— l)il +e)—2l —e)cos 20+ (1 +e)—(k + 1){1 —e) cos 20] (?)2+O[(a>4]}

C

(31a)
4 _ O . . a\? a\*
vy =;);c 2(1—e)sin 260+ 2[(k —1){1 —e)sin 20]{— ] +O} |- ) (31b)
2 ¢ ¢
In the same way for ¢ » a and r = ¢, the stresses in equations (20) simplify to
o = ;—[(1 +e)—(1—e) cos 20], (32a)
@ = %(1 —¢)sin 20, (32b)
and the displacements in equations (21) are
u? = 21#(:{(;\-— 1)(1 +e)—2(1 —e)cos 20+ [(k + 1)(1 + e)— 4 + 1)(1 —e) cos 20]
! (33a)

S

(e ol
o = £ el -y 20+0[(j)4]} (33b)

When a/c is identically zero, equations (30) and (31) agree with equations (32) and (33),
respectively. In general, they must be distinguished by the superscripts (1) and (2) since
the stored energy depends upon terms of order a?/c* in the stresses and of order a?/c in
the displacements. The higher order terms in a/c do not contribute to the strain energy.

Comparing the two systems of stresses and displacements labeled by superscripts (1)
and (2), and defining the difference between any two like quantities by the symbol A,
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such as Ac, = ¢'?) — ¢!V, etc., it is found that

Ao, = f{[u +e)—4(1—e)cos 29](‘—’)2 + 0[(" )4]} (34a)
2 c ¢
Aty = —;—’{[2(1 —e¢)sin 20]( )2+0[(§)4]}, (34b)

Au, = _"_c{[(x—n(l+e)—2(x+1)(1—e) cos 20] (g 2+o[(§ )4]} (35a)

: i/

These stresses and displacements may be interpreted as corrections to equations (30) and
(31). In addition, their character suggests the following generalization

(PRI

and

| &

Avo =

[

1 .
_ﬂc{2[(x— 1}(1 —e) sin 26] (

Ag, = 24 —2C cos 20, (36a)
Az,y = (6Br?+2C)sin 26, (36b)
and
2
Au, = ;r{(lc— 1)A +[(x —3)Br* —2C] cos 26}, (37a)
2 2 .
Avy = ;r[(x+ 3)Br* +2C] sin 26, (37b)

which are derived from the Goursat functions*

d(z) = (A + Bz?)z, Y(z) = 2Cz. (38)

The complex variable z stands for x +iy. Equations (36) and (37) are valid for cavities of
arbitrary shape as long as the radial distance r is large in comparison with the geometric
dimensions of the cavity. The constants 4, B, and C may be evaluated from the prescribed
surface tractions. For instance, adding equations (36) onto equations (30) and applying
the boundary conditions, equations (19), yield

2

) . (39)

o a\? o a\?
4=30+9 (;) , B= —Ec—z(l—e)(;) , C= rf(l—e)(
Inserting these constants into equations (36) and (37), it can be shown that the resulting
expressions are precisely those given by equations (34) and (35).

Without going into details, similar modifications may be established for the skew-
symmetric problem of circular hole. Ignoring terms of order a*/c* in g,, 7,4 and of order
a*/c? in u,, v,, the supplementary terms to equations (13) and (14) can be obtained from

ERE]

* Equations (38) may be inserted into the complex combinations, equations (64) in Appendix 1 to give
equations (36) and (37).
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equations (25) and (26) as

oo o)
SERRCIN )

]
I —
R ] —

The extension of equations (40) and (41) to handle problems with cavities of any shape can
be made by introducing the complex functions

¢(z) = iBz*, Y(z) = 2iCz (42)

(40b)

and

from which the corrections on the stresses and displacements are calculated. They are
given by

Ao, = 2Cssin 20, (43a)
Aty = (6Br*+2C) cos 20, (43b)
and
1 ' -
Au, = 5;r[(s —K)Br? +2C] sin 20, (44a)
Aoy = a-ri(k-+3)Br? +2C] cos 20. (44b)
1]

For a round hole, the constants B and C take the values

It is appropriate, at this point, to propose a method for evaluating the stored energy in
an infinite body, which may be summarized as follows:

“The strain energy in an infinite elastic medium, loaded at infinity and weakened by
cavities of certain shape, may be computed from the integral

j [(6D + Aa,) () + Au,) + Q) + At,) (031 + Avg)], - . ¢ dO 45)

where o', t{2) and u", v§? are the respective stresses and displacements on a circle of
radius r about the cavity, and the radius, ¢, of the closed contour can be made arbitrarily
large. The corrections Ao,, A1,y and Au,, Av, for biaxial tension and/or pure shear
applied at infinity correspond to those shown in equations (36), (37), (43) and (44).”
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If the boundary, on which tractions are specified, has finite dimensions, the calculation
of strain energy is straightforward. Complication arises only when the loaded boundary
is of infinite extent. Surprisingly enough, this kind of problem has yet to be treated satis-
factorily in the literature. To illustrate the present method of solution, equation {45) will
be applied to problems with non-circular cavities.

ELLIPTICAL CAVITY

The problem of an elliptical cavity embedded in an infinite medium, Fig. 3, is of con-
siderable importance in the development of fracture theories. The solution to this problem

r
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F1G. 3. Infinite plate with an elliptical cavity.

can be found in the work of Muskhelishvili { 10]. He considers a conformal transformation
from the z-plane, in which the cavity is elliptical in shape, onto the {-plane, in which the
cavity becomes circular, by means of the mapping function

z:w(():n(€+%), n>0, 0<m< 1.

The parameters m and n are related to the semi-axes of the ellipse by the relations
a—b a+b

=, = 46

a+b ! 2 (46)

Because the subsequent energy calculation requires only the knowledge of ¢,, 7,4 and u,,
ve in a set of cylindrical polar coordinate system, it suffices to cite

- _ 4’1(0 eZiG " 7 " ’ ’ 2
0, —it,y = 2Re [w(C] o (C)]“ Ho' (") — o Q" O+ ¥ DN}, @47
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and

2p(u, +ivg) = € "’l: K(()— —w——c?ﬁ_ l~//_] (48)

in which the two unknown functions ¢({) and ({) are determined from the boundary
conditions stated in equations (19). The symmetrical and skew-symmetrical loadings.at
infinity will be treated individually.

Symmetrical loading

Let the edge of the elliptical opening be free from tractions and let the state of stress
at infinity be tension of magnitude ec in the x-direction and ¢ in the y-direction. For this
problem, the stress functions are [10]

2(1 -
o0 = 2 El o) (c—l’) ( e], (492)
4 {
_on m{*+1 5 £
W) = Tm{(l—é’)( 7 ) ~(1+m )[m(1+€)+(1‘e)]m} (49b)

The inverse of the mapping function is

i)

Making use of equations (47), (49), (50) and putting z = re, the radial and shear stresses,
expressed in series forms, are

gl = —;<(l +e)—(1—e) cos 20— {[(1 +m*) (1 + )+ 2m(1 — )] — 4| m(1 + €)+ (1 — ¢) cos 20}

2 n 4 (51a)
<) ol T)
) = %{(1 —e)sin 20+ 2| m(1 + e} +(1 —e)] (g) i + 0[(':)4]} (51b)

Similarly, equations (48) and (49) yield the series expansions of the displacements in powers
of the ratio n/r:

j=]

-~

ulV = ir<(1+e)(x—1)—2(1—e) cos 20 (52a)

YD

+2{1+m*)(1+e)+2m(1 —e)— (K+1)[m(l+e)+(1-—e)cos29]}( ) +0
o1 =ir 2(1—e)sin 20+ {(x — 1)[m(1 +e)+ (1 —e)] sin 20}(;)2 l:( ;) ]> (52b)



14 G. C. S and H. Ligsowirz

An energy calculation, based on the stresses and displacements as they appear in equations
(51) and (52), gives

W = W,+AW
where W, corresponds to equation (10) and

n(1 +v)o’n?
8E

+2(k— D1 —e)[m(l +e)+{1—e)]}, {1921).

If m = 0 and n = g, equation (11) is recovered. In the special case of m = 1 and n = a/2,
equation (53) reduces to the solution of a line crack, equation (12). A further simplification
of having e = 1 renders equation (8) in [1] as obtained by Griffith in 1921. The mere fact
that AW fails to check with the correct solution, equation (24), for a circular hole indicates
that equation (53) is incorrect.

The modifications that must be imposed on equations (51) and (52) are given by equa-
tions (36) and (37), respectively. The obtained expressions are then adjusted through the
constants A4, B, and C such that the stresses satisfy equations (19) with t = 0. This requires

AW = {B=1) 1 +e)[(1 +m*)(1 +e)+2m(1 —e)]

(53)

A= %[(1 +m*)(1+e)+2m(1 —6)}(

R

2¢?

y

Hence, the integrand in equation (45) is completely known and the integration may be
carried out to obtain that portion of the energy due to the elliptical cavity:

)2, B= —i[m(1+e)+(1-e)](~:-)2,

C = oml+e)+(1 —e)](

RRE:]

n(l +v)ain?

AW =
v 8E

(k+ D1 +m*) (1 +e)* +4m(1 —e?)+2(1 —¢)*]. {1924)

By suitable choice of m and n, ellipse of any dimension and shape may be realized. How-
ever, it is more convenient to express AW in terms of @ and b, the semi-axes of the ellipse.
The parameters m and » can be eliminated by using equation (46) to find

2
M0 (14 ea? + b))+ 201 — e — b+ (1 — e at b2, (1924) (54)

AW =
16E

which is in agreement with equation (24) for a = b. When b = 0, equation (54) takes the
form of equation (3b) and is independent of e. This implies that AW is positive definite
and is not affected by the appled stress in line with the crack edges. The energy of Griffith’s
crack corresponds to e = 1, i.e. a state of uniform stress at infinity.

Skew-symmetrical loading
The stress functions [10]

itn itn [m{ 21

+(1+m?) ¢ ] (55)

o0 =" wO="" 1" o

{

correspond to a state of pure shear parallel to the axes of the elliptical hole. To find the
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stresses and displacements in the medium, equations (47), (48), (50) and (55) may be com-

bined to give
4
o — z{sin 20 —[4sin 26] (g) +0[( ) ]} (56a)

D) = T{COS 20+[2 cos 29]( ) [( ) ]} o

uV = %r{sm 20+[(x+ 1) sin 29]( ) [(;) :]} (57a)
ol = %—r{cos 20+ [(x—1)cos 20]( ) +O[(g) }} (57b)

If modifications are not imposed on equations {56) and (57), the difference between the
total energy of the system and the strain energy of the body with no hole would be

and

(1 + v)rzn2

AW = (k—1), (1921) (58)

which is incorrect since it disagrees with equation (82) for n = q, the exact solution to the
circular hole problem.

The present method of analysis requires the superposition of equations (43) and (44)
onto equations (56) and (57), respectively. The constants B, C are evaluated from the
conditions prescribed in equations (19) with ¢ = 0, and the results are

2
B = —%(”), C=2r(n).
coAC c

It follows from equation (45) that the integration around the circular contour of radius ¢

yields
2.2 2 4
w = MLHvTe {1+(x+1)(3) +o[(f) ]}
E ¢ c

where n = (a+b)/2. The non-vanishing term that remains finite as ¢ —» o is

(1 +v)?

AW = ~1E (k+1(a+b)’, (1924). (59

It is surmised that equations (54) and (59) could also be obtained as limiting cases of
the problem of confocal ellipses. Moreover, the formulation of energy criterion should
be based upon equations (54), (59) and not equations (53), (58).

ENERGY BALANCE

The classical treatment of the fracture problem as originated by Griffith [1, 3] assumes
the model of a line crack in an infinite medium. This model will be extended to the case
of an elliptically-shaped defect. Griffith’s energy approach considers the stored energy
and surface energy in the system. The former arises from the work done by external loads,
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while the latter arises from the energy required for the formation of fracture surfaces as
the original defect increases in size. Symbolically, Grithith’s criterion of fracture may be
written as

5%(As —AW) = 0. (60)

In equation (60), AS is equal to the product of the surface area of the ellipse and the specific
surface energy of the material y, i.e.

2n
AS = 4y f . V/[a? cos20+b? sin%0] d6 = 4yaE(k). (61)

Here, E(k) is the complete elliptic integral of the second kind with modulus

2
= -0
a
and its derivative with respect to a is

E(k) 1 (K

2
% 5&) [E(k) - K(K)],

where K(k) is the complete elliptic integral of the first kind associated with the argument
k, which is related to k' by

K+k?=1.

It will be assumed that the radius of curvature, p = b%/g, at the ends of the major axis of
the ellipse remains unchanged as the length of the axis is increased, i.e. dp/da = 0. The
excess of strain energy AW due to the elliptical cavity under biaxial tension and pure shear
are given by equations (54) and (59), respectively.

Biaxial tension
Substituting equations (54) and (61) into the fracture criterion equation (60), the critical
stress for failure is found:

na(l+v)(x+1) , 4 l: (L +k%)E(k)~k"*K(k)

§E T2 (1+e)2(3—k2)+2(1—e’)(l+k2)+(1—e)2(1+k')(2+"')]’ .

which includes equation (2) for a sharp crack as a special case. The variations of the left
hand side of equation (62) with the ratio b/a for e = 1,2 are shown by the curves in Fig. 4.
For e = 1, the critical stress for a narrow ellipse and a sharp crack changes only slightly.
On the other hand, as the tension in the x-direction is increased, o, tends to drop appre-
ciably for a small variation of b/a about the origin. This effect is somewhat illustrated by
the curve for e = 2.

Pure shear
Applying the failure criterion, equation (60), to the problem of uniform shear, equations
(59) and (61) lead to the relation

na(l+v)c+1) , (1 +K)ER) —k2K(K)

- 63
&E (1 +K)2+K) (63)
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Equation (63) shows that t_, is a complicated function of the geometry of the ellipse and
its dependency on b/a can be best illustrated by the curve in Fig. 5. For small values of b/a,
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—[ SE 1924
o= e

of a line crack differs significantly from that of a narrow ellipse.

the critical shear stress

CONCLUSIONS

A method for the analytical determination of strain energy in an infinite body with
a void of some kind is presented. Energy expressions are derived for an elliptical cavity
subjected to normal and shear loads at infinity and are incorporated into a failure criterion.
It appears that the present method of analysis is considerably simpler than the use of
curvilinear coordinates as it was done in the classical works of Griffith [ 1, 3]. Consequently,
it is also possible to calculate the energy of cavities of more general shapes such as the
case of an ovaloid hole.

The most important result may not necessarily be the method of finding strain energy
in an infinite medium, but the primary contribution here is perhaps that the disagreement
between Griffith’s results published in 1921 and 1924 is resolved and the way is cleared
for the correct application of Griffith’s concepts to fracture theories.
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APPENDIX 1

Complex Variable Formulation of the Annulus Problem

The term “‘annulus™ will refer to the region between two concentric circumferences.
The external and internal radii of the annulus are denoted by ¢ and a, respectively, as
shown in Fig. 2. This problem will be formulated in the complex plane z = x +iy, where
the stresses* and displacements may be expressed in terms of two complex potentials

P(2), Y(2):

* The relation

0,40y = 2[¢'(2) + ¢'(2)]

is not needed in the present analysis.
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0, —it,e = ¢'(2)+¢'(2)—e"2¢"(2) + ¥ '(2), (642)
2u,+ivy) = ¢~ “[k(z)—2¢'(z) — ¥ (2)]. (64b)

1t is expedient to expand ¢'(z) and y'(z) in Laurent series as follows:
$2)= Y A,z Y'(z) = _Z B,z". (65)

These functions are holomorphic in the annulus, where the inner circumference may be
shrunk into a single point and the outer circumference may become infinitely large. The
logarithmic terms in equation (64b) must be eliminated to ensure single-valuedness of
the displacements. Hence, it is necessary to have

KA_1+B_1 :0 (66)

Similar relations for the remaining coefficients 4, B, may be established from the boundary
conditions of the problem.
Suppose that the annulus is internally free from applied loads, i.e.

(0, —iT,g)p=g =0 (67a)

and is externally subjected to surface tractions, which may be represented by the complex
Fourier series

(@ —itghoc = Y. Ce™. (67b)

The coefficients C, are determined by the formula
1 2n
Cp = %J [0(0)—it,o(0)],—ce™#°df, p=0,+1,+2,.... (68)
0
Combining equations (64a) and (67) gives

© -2 L2 o P . 0
_Z;’O {(1 —p)Ap—Bp_zl:Zgz:I}[zp] ezp9+ _zo:O Ap |:Z’;| e irf =|:Cpeipoj| .

The coefficients of like powers of e on both sides of the above expressions are equated to
yield for p = 0,

Ao+ Ag)—B [“] -0]
(Ao+A4o)—B_, R —LCO ) (69)

and forp= +1, £2,...,

a? a?= ¥ [a” 0
( _p)Ap[c”]_Bp_zl:c”’z]+A_p_c"’:| N [C :l 70

p

Since the addition of an imaginary constant of ¢'(z) cannot affect the state of stress,
A, may be taken as real, i.e. 4, = Ay. Now, the constants 4, and B_, in equations (69)
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may be solved :

1{ c? a’c?
AO = i(cz——(;i) Co, B_2 = (CZ —az) CO' (71)

Moreover, the first of equations (70) demands that for p = 1,
A ,—B_, =0, or A_,=B_,
which contradicts equation (66) unless both 4A_, and B_, are identically zero. If the

tractions on the boundary r = ¢ are self-equilibrating, C, must also vanish. Solving
equations (70), it is found that

¢ —a

3 V=
Ay =—7—=]C-y (72)
and
A, = {(1+p)(c?—a?)c™PC —[2' P — g2 ~P)erC_ L (c?/D,), p=+12,+3,..., (73)
where
Dp = (1 _pZ)(CZ _a2)2 __[CZ(I +p)_a2(1 +p)][c2(1—p)__a2(l—p)]‘

In the same fashion, B, are obtained :

B, , =(1-pa4,+a®""PA_,, p=+2,43,.... (74)

Once the constants C, are determined from equation (68), the coefficients 4,, B, follow
immediately from equations (71) to (74). Thus, the problem is basically solved.

APPENDIX 2

Stresses Even in 6,(—0) = 6/0); Odd in 1,4(—0) = —1,4(0)
Let the outer circumference of the annulus be subjected to the stresses

(@~ itghmc = (1 +6) =2 (1 —e)e?™

Then, equation (68) leads to
Co =%(1+e), C, = ——%(1-—e), and C,=0, forp=+1,-2,3,....

From equations (71) to (74), the non-vanishing coefficients of 4, B, are

4. a(1 —e)a’c*(a* +ac® +¢*) _a(l+e)c? 4 = _3o(1— e)a’c?
-2 = 2(62_a2)3 s o 2(6‘2—-02)’ 2= 2((,‘2—02)3 >
and
B .- 30(1 —e)a*c*(a’ +c?) B .- o(1 +e)a’c? _a(l—e)c*(da* +a*c’ +c*)
w4 2(c*—a? ’ 2T 2At-aY) o~ 2(c?—a?)? ’
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which may be inserted into equations (65) to render the Goursat functions

oalc? 2 2 1
olz) = yTE ﬁl +e) (—— ) z—2(1—-e)z3 -2(1 —e)(a*+a*c? +c4)—] ,  {75a)
4(c ) z
2.2 4
Y(z) = 2—(;;%-2—53- I:(l —e) (4«212 +c? +§7)z —(1 +e)(c? -az)é
(75b)
—~(1 +e)a*c*a® +c2);15] .
By letting the radius ¢ to become infinite, equations (75) reduce to
_alt (1—e)a?
¢(z) = 5[5(1 +e)z— . ] (76a)
o (1+ea®> (1- e)a“]
¥(2) = 5[(1—e)z- — | (76b)

Equations (76) represent the solution to the problem of a circular hole in an infinite medium
under biaxial tension.

APPENDIX 3
Stresses Odd in 6 (—0) = — o {(0): Even in 1,{—8) = 1,40)
When the stress combination

(6,—itg)y=c = —ite*”

is substituted into equation (68), all coefficients in the Fourier expansion, equation (67b),
vanish except

Cz = —'iT.

The corresponding coefficients in the Laurent series, equations (65), are

ita’cXa* +a*ct +c%) 3ita®c?
A g = - 3 333 s A2 S S ™ T
{c*—a*%) {c*—a%)
and
Jita*c*a? +c?) itc*(da*+a%c* + c‘)
R e R
Hence,
ita®c? 1
¢(Z) ( 2 2)3 [Z (04 + aZCZ + CA);], (773)

4
¥iz) = (lzm i [(4{1 +ci 4= )z+a2c2(a2+cz)zi3] , (77b)
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The Goursat functions for the case of an infinite plate with a round hole subjected to pure
shear are obtained from equations (77) by setting ¢ = oo and are given by

: 2 4
b(z) = iE;L W(z) = it z+% . (78)

{Received 11 August 1966)

Résumé—La théorie de Griffith relative a la propagation d’une fissure instable est de nouveau examinée pour
étudier les différences d’opinion concernant la dépendance précise de I'effort critique sur la constante élastique
dans une matiére fragile. Le désaccord résultant du calcul de ’énergie de tension contenue dans un corps félé
chargé a l'infinité est résolu en observant que I’énergie de la fissure ou cavité d’une certaine forme est
géométriquement indépendante. L’on a déduit de la solution du probléme de I’anneau concentrique que les
efforts et déplacements sur un contour fermé aux environs de la cavité doivent étre modifiés pour produire la
forme correct d’énergie élastique. La théorie de Clapeyron est appliquée de facon que 'on puisse dérivér la
fonction d’énergie A partir du travail effectué par les tractions de surface. Une méthode générale pour la déter-
mination de I'énergie de tension dans un milieu infini, ayant des cavités d’une configuration arbitraire est
présentée. Des solutions de formes fermées sont obtenues pour la résolution du probléme d’une fissure de forme
elliptique et sont incorporées dans une théorie de fracture de corps fragile. Plus précisément, des charges critiques
pour une fissure elliptique causée par une tension biaxiale et cisaillement pur y sont donnés. Cette analyse actuelle
confirme également les revendications de Griffith en 1924 que son expression de I'énergie originale, publiée en
1921 est en effet erronée.

Zusammenfassung—Die Theorie von Griffith fiir das labile Vordringen des Rifles wird untersucht um die
verschiedenen Ansichten iiber die genauen Zusammenhinge zwischen der kritischen Spannung und der elastischen
Konstante in sprodem Meterial festzustellen. Die anscheinende Meinungsverschiedenheit {ie aus der Berechnung
der Forminderungsenergie eines geriBenen Kdrpers bei Unendlichkeit, die aufgespeichert ist entsteht wird durch
die Beobachtung gelost, daB3 die Rif3- oder Hohlkorpernergie gewisser Formen geometrisch unabhéngig ist.
Aus der Losung des Konzentrischen-Kreisringproblemes wird festgestellt, da3 die Spannungen und Verschie-
bungen etner geschlossenen Kurve um den Hohlkorper gedndert werden miissen um die korrekte elastische
Energieform zu ergeben. Das Theorem Clapeyrons wird angewandt um die Kraftfunktion aus der geleisteten
Arbeit abzuleiten. Fine allgemeine Methode zur Feststellung der Spannungsenergic in einem unendlichen
Medium mit Hohlkorpern beliebiger Form wird gegeben. Geschlossene Losungen werden fiir das Problem der
elliptischen Risse gegeben und in die Theorie der Sprodbriiche eingereiht. Insbesondere werden die kritischen
Spannungen fiir eine elliptische RiB3- oder Bruchstelle als Folge biaxialer Spannung und reiner Scherung gegeben.
Die gegebene Analyse bestitigt auch Griffith’s Ansicht, (1924) daB sein urspriinglicher Energiesatz, wie in 1921
veroffentlicht ferhlerhaft war.

Abcrpakr—IlepecMaTpuBaeTca Teopusi Ipuddurca mig pacnpocTpaHeHHsT HEYCTOMMMBOM TpELIMHEI,
YTOOBI MCCNIENOBATh PA3HHIYY MHEHHH OTHOCHTEIBHO TOYHOM 3aBHCHMMOCTH KPDUTHYECKOTO HAMPSXKEHHS U
371aCTHYECKON TIOCTOAHHOM B XpYNKOM MaTepuasjie. BuaumMoe HECOrJIacCHE, BO3HUKAIOIIEE U3 BbIYHCIICHHUSA
3Heprud JepopMaluu, HAKOIUTSIOEHCS B TPDECHYTOM TeJl€, HArPyXKEHHOM B OeCKOHEMHOCTH, pa3pemaeTcs
HaOJIIOiICHHEM TOTO, YTO IHEPTHS TPELUTHHBI WU TIOJIOCTH ONpeAeSIEHHOH HOPMBI YMEPEHHO T€OMETPHYECKH
HesaBucuma. VI3 pelieHus npoGieMnl KOHIEHTPHUYECKOTO KPYTOBOIO KOJIbLA HAMOEHO, YTO HANPSIKECHUS K
CMEILIEHHUS HA 3aMKHYTOM KOHTYPE OKOJIO ITOJIOCTH AOJIKHBI ObITh M3MEHEHBI, YTOOBI YCTYIIUTD NPABUIBHON
dopme snmacTuyeckoii sHeprun. Teopema Knanelipona ynotpebisercs Tak, 4TO QYHKIMA JHEPTHH MOXET
6LITe BbIBeAEHA M3 PAbOTH CHJI ClEmIeHMs MoBepXHocTH. IIpemnaraercs o6liuii MeTon onpeneneHus
3Heprud aedopmanuu B OECKOHEYHON Cpeae ¢ MONOCTSIMH NPOW3BOIBHOM KoHGWrypaumu. IlonydeHsr
peleHrst 3aMKHYTOR $opMbel npobiieMbl auMnTHYeCKU-00pa3Horo nedekra U oObeOAWHEHBI B TEOPHIO
Xpynkoro uijioMa. Boitee cieuudUyHO AAOTCH KPUTHHYECKME HAMPSDKEHUS IUIA 3/UIMITHYECKOTO Aedexra
TPEIIMHEL IO NPHYKHE OHAKCHANBHOTO HATSKEHUS M YUCTOro casura. HacTtosumil aHamis NOATBEPXAAET
Takxe yreepxaernue I'pudpdurca B 1924-M roay, 4To €ro nepBOHAYAIBHOE BEIPaXKEHUE IHEPTHH, OITy Bi1MKO-
BaHHOE B 1921-M roay—neiCTBUTENBHO OLIMOOYHO.



